Difference between revisions of "AGGREGATE examples"
Line 77: | Line 77: | ||
<div class=ans> | <div class=ans> | ||
pp.pprint(list(db.world.aggregate([{"$project":{"_id":0,"name":1,}},{"$sort":{"name":-1}}]))) | pp.pprint(list(db.world.aggregate([{"$project":{"_id":0,"name":1,}},{"$sort":{"name":-1}}]))) | ||
+ | </div> | ||
+ | </div> | ||
+ | ==Grouping== | ||
+ | Grouping allows us to use accumulator operations sum as <code>$sum</code><br /> | ||
+ | All groups must have an <code>_id</code>, but this can be set to <code>null</code>. | ||
+ | <div class='extra_space' style='width:1em; height:6em;'></div> | ||
+ | <div class=q data-lang="py3"> | ||
+ | <code>$max</code> and <code>$min</code> can be used to get the largest and smallest values in a group. | ||
+ | <p class=strong>Show the country with the largest gdp and the one with the lowest</p> | ||
+ | <pre class=def> | ||
+ | pp.pprint(list( | ||
+ | db.world.aggregate([ | ||
+ | {"$group":{ | ||
+ | "_id": $name, | ||
+ | smallest: {"$min": "$gdp"}, | ||
+ | largest: {"$max": "$gdp"} | ||
+ | }}, | ||
+ | ]) | ||
+ | )) | ||
+ | </pre> | ||
+ | <div class=ans> | ||
+ | pp.pprint(list(db.world.aggregate([{"$group":{"_id":$name,smallest:{"$min":"$gdp"},largest:{"$max":"$gdp"}}},]))) | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 19:52, 16 July 2015
#ENCODING import io import sys sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-16') #MONGO from pymongo import MongoClient client = MongoClient() client.progzoo.authenticate('scott','tiger') db = client['progzoo'] #PRETTY import pprint pp = pprint.PrettyPrinter(indent=4)
Introducing the aggregation framework
These examples introduce the aggregation framework and its operators. Again we will be using the collection world
$match
Allows us to perform queries in a similar way to find()
Show all the details for France
pp.pprint(list( db.world.aggregate([ {"$match":{"name":"France"}} ]) ))
pp.pprint(list(db.world.aggregate([{"$match":{"name":"France"}}])))
$project
Allows us to select what fields to display.
It can also has the ability to insert new fields and allows you to compare fields against each other without using $where
Show the name and population density of all Asian countries. (population/area)
Note that "density" is a new field, made from the result of dividing two existing fields, and that $divide
is an aggregate function.
To avoid diving by 0 we do a $match
to remove any countries with negligible area, then pipe these results through to $project
pp.pprint(list( db.world.aggregate([ {"$match":{"area":{"$ne":0},"continent":"Asia"}}, {"$project":{ "_id":0, "name":1, "density": {"$divide": ["$population","$area"]} }} ]) ))
pp.pprint(list(db.world.aggregate([{"$match":{"area":{"$ne":0},"continent":"Asia"}},{"$project":{"_id":0,"name":1,"density":{"$divide":["$population","$area"]}}}])))
$sort
Allows us to choose how the results are displayed, where 1 is ascending and -1 is descending.
Note that excluding $match
is the same as {"$match":{}}
Show the name of all countries in descending order.
pp.pprint(list( db.world.aggregate([ {"$project":{ "_id":0, "name":1, }}, {"$sort":{ "name":-1 }} ]) ))
pp.pprint(list(db.world.aggregate([{"$project":{"_id":0,"name":1,}},{"$sort":{"name":-1}}])))
Grouping
Grouping allows us to use accumulator operations sum as $sum
All groups must have an _id
, but this can be set to null
.
$max
and $min
can be used to get the largest and smallest values in a group.
Show the country with the largest gdp and the one with the lowest
pp.pprint(list( db.world.aggregate([ {"$group":{ "_id": $name, smallest: {"$min": "$gdp"}, largest: {"$max": "$gdp"} }}, ]) ))
pp.pprint(list(db.world.aggregate([{"$group":{"_id":$name,smallest:{"$min":"$gdp"},largest:{"$max":"$gdp"}}},])))