Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "AGGREGATE examples"

From NoSQLZoo
Jump to: navigation, search
Line 180: Line 180:
 
<div class=ans>
 
<div class=ans>
 
pp.pprint(list(db.world.aggregate([{"$group":{'_id':'$continent','min':{"$min":"$gdp"},'max':{"$max":"$gdp"}}},{"$project":{"_id":1,"min":1,"max":1}},])))
 
pp.pprint(list(db.world.aggregate([{"$group":{'_id':'$continent','min':{"$min":"$gdp"},'max':{"$max":"$gdp"}}},{"$project":{"_id":1,"min":1,"max":1}},])))
</div>
 
</div>
 
 
<div class=q data-lang="py3">
 
A downside of grouping is that it is not possible to find the <code>$name</code> of the country with the min/max value.<br/><br/>
 
A simple way is to do this combine a sort <code>sort=[(<fieldname>, <direction>)]</code> and a <code>find_one()</code>. Performance will be improved if these fields have previously been indexed.
 
<p class=strong>Get the names and GDPs of the two countries with the smallest and largest GDPs.</p>
 
<div class="hint" title="Avoiding null results">
 
It is possible that we will occasionally encounter <code>null</code> values in a data collection. This could be either where the field is simply not present in a certain document - MongoDB will simply ignore this document and not include it in the results set - or a document has a redundancy where the field is specified as null - which MongoDB <b>will</b> include. e.g: <code>{"name": "Bob", "age": None}</code> etc.<br/><br/>To deal with this we can use <code>{<field>: {"$ne": None}}</code> to prevent any null values from being included.
 
</div>
 
<pre class=def>
 
pp.pprint(
 
    db.world.find_one({"gdp":{"$ne":None}},{"name":1,"gdp":1,"_id":0},sort=[("gdp", 1)])
 
)
 
pp.pprint(
 
    db.world.find_one({},{"name":1,"gdp":1,"_id":0},sort=[("gdp", -1)])
 
)
 
</pre>
 
<div class=ans>
 
pp.pprint(db.world.find_one({"gdp":{"$ne":None}},{"name":1,"gdp":1,"_id":0},sort=[("gdp", 1)]))
 
pp.pprint(db.world.find_one({},{"name":1,"gdp":1,"_id":0},sort=[("gdp", -1)]))
 
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 13:37, 26 July 2015

#ENCODING
import io
import sys
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-16')
#MONGO
from pymongo import MongoClient
client = MongoClient()
client.progzoo.authenticate('scott','tiger')
db = client['progzoo']
#PRETTY
import pprint
pp = pprint.PrettyPrinter(indent=4)

Introducing the aggregation framework

These examples introduce the aggregation framework and its operators. Again we will be using the collection world

$match performs queries in a similar way to find()

Show all the details for France

pp.pprint(list(
    db.world.aggregate([
        {"$match":{"name":"France"}}
    ])
))

pp.pprint(list(db.world.aggregate([{"$match":{"name":"France"}}])))

limit sets the amount of documents to be handed to the next stage in the pipeline.

Return the first document

pp.pprint(list(
    db.world.aggregate([
        {"$limit":1}
    ])
))

pp.pprint(list(db.world.aggregate([{"$limit":1}])))

$project selects what fields to display.
It can also has the ability to create new fields and to compare fields against each other without using $where

Show the name and population density of all Asian countries. (population/area)

Note that "density" is a new field, made from the result of dividing two existing fields, and that $divide is an aggregate function.

To avoid diving by 0 insert a $match to remove any countries with 0 area (Vatican City), then pipe these results through to $project
There is no need to check if values are null, MongoDB will ignore these documents.

pp.pprint(list(
     db.world.aggregate([
        {"$match":{"area":{"$ne":0},"continent":"Asia"}},
        {"$project":{
            "_id":0,
            "name":1,
            "density": {"$divide": ["$population","$area"]}
        }}
    ])
))

pp.pprint(list(db.world.aggregate([{"$match":{"area":{"$ne":0},"continent":"Asia"}},{"$project":{"_id":0,"name":1,"density":{"$divide":["$population","$area"]}}}])))

Because aggregate is a pipeline stages may be repeated, and stages don't have to be used in a specific order.

Show the name of Asian countries with a density that's over 500 people per km2. (population/area)

pp.pprint(list(
     db.world.aggregate([
        {"$match":{"area":{"$ne":0},"continent":"Asia"}},
        {"$project":{
            "_id":0,
            "name":1,
            "density": {"$divide": ["$population","$area"]}
        }},
        {"$match":{"density":{"$gt":500}}}
    ])
))

pp.pprint(list(db.world.aggregate([{"$match":{"area":{"$ne":0},"continent":"Asia"}},{"$project":{"_id":0,"name":1,"density":{"$divide":["$population","$area"]}}},{"$match":{"density":{"$gt":500}}}])))

$sort allows ordering of the results set, where 1 is ascending and -1 is descending.
Note that not including $match is the same as {"$match":{}}

Show the name of all countries in descending order.

pp.pprint(list(
     db.world.aggregate([
        {"$project":{
            "_id":0,
            "name":1,
        }},
        {"$sort":{
            "name":-1
        }}  
    ])
))

pp.pprint(list(db.world.aggregate([{"$project":{"_id":0,"name":1,}},{"$sort":{"name":-1}}])))

Grouping

Grouping provides accumulator operations such as $sum
All groups must have an _id. To see why this is useful imagine the following:

So far you've been using the collection world
As every country has a continent, it would make sense to have countries as a nested document inside continents: e.g:

[    
    {"name":"Africa",
     "countries":[
         {"name":"Algeria",    "capital":"Algiers",   ...},
         {"name":"Angola",     "capital":"Luanda",    ...},
         {"name":"Benin",      "capital":"Porto-Novo",...}.
         {...},
         ...
    ]},
    {"name":"Asia",
     "countries":[
         {"name":"Afghanistan","capital":"Kabul", ...},
         {"name":"Azerbaijan", "capital":"Baku",  ...},
         {"name":"Bahrain",    "capital":"Manama",...},
         {...},
         ...
    ]},
    {...},
    ...
]

The world collection isn't like this however. It uses the following structure, which has a redundancy where continent is repeated for each country.

[ 
    {"name":"Afghanistan","capital":"Kabul",  "continent":"Asia",  ...},
    {"name":"Albania",    "capital":"Tirana", "continent":"Europe, ...},
    {"name":"Algeria",    "capital":"Algiers","contiennt":"Africa",...},
    {...},
    ...
]

The code to group by continent is "_id":"$continent"
If instead the question was to group by country the code would be "_id":"$name".
To operate over the whole document (which would have the same effect as "_id":"$name") "_id":"null" or "_id":None can be used.

$max and $min can be used to get the largest and smallest values in a group.

Get the smallest and largest GDPs of each continent.

pp.pprint(list(
    db.world.aggregate([
        {"$group":{
            '_id':'$continent',
            'min':{"$min":"$gdp"},
            'max':{"$max":"$gdp"}
        }},
        {"$project":{
            "_id":1,
            "min":1,
            "max":1
        }},
    ])
))

pp.pprint(list(db.world.aggregate([{"$group":{'_id':'$continent','min':{"$min":"$gdp"},'max':{"$max":"$gdp"}}},{"$project":{"_id":1,"min":1,"max":1}},])))

Some other useful aggregate functions to know are $sum and average: $avg
This example combines all the material in these examples.

Order the continents in descending order by total GDP, Include the average GDP for each country.

pp.pprint(list(
    db.world.aggregate([
        {"$match":{}},
        {"$group":{
            "_id":"$continent",
            "Total GDP": {"$sum": "$gdp"},
            "Average GDP": {"$avg": "$gdp"}
        }},
        {"$sort":{
            "Total GDP":-1
        }},
        {"$project":{
            "Area":"$_id",
            "Total GDP": 1,
            "Average GDP":1,
            "_id":0
        }}
    ])
))

pp.pprint(list(db.world.aggregate([{"$group":{"_id":"$continent","Total GDP":{"$sum":"$gdp"},"Average GDP":{"$avg":"$gdp"}}},{"$sort":{"Total GDP":-1}},{"$project":{"Area":"$_id","Total GDP":1,"Average GDP":1,"_id":0}}])))