Difference between revisions of "Sum and Count"
From NoSQLZoo
Line 42: | Line 42: | ||
<div class=q data-lang="py3">Array.sum() | <div class=q data-lang="py3">Array.sum() | ||
<div class="def">temp = db.world.map_reduce( | <div class="def">temp = db.world.map_reduce( | ||
− | map=Code("function(){emit(this. | + | map=Code("function(){emit(this.continent, this.population)}"), |
reduce=Code("""function(k,v){ | reduce=Code("""function(k,v){ | ||
return Array.sum(v) | return Array.sum(v) |
Revision as of 09:23, 28 July 2015
#ENCODING import io import sys sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-16') #MONGO from pymongo import MongoClient client = MongoClient() client.progzoo.authenticate('scott','tiger') db = client['progzoo'] #PRETTY import pprint pp = pprint.PrettyPrinter(indent=4) #CODE from bson.code import Code
There are many ways to do this in MongoDB.
count()
is a cursor method that takes a query and returns a number equal to the amount of documents that matched the query.
$sum
is an aggregation operator availible in the $group
stage, that can be used to both sum values and count the number of documents.
mapReduce can produce a sum or a count during the results stage by using JavaScript.
.count()
print(db.world.count({"continent":"Africa"}))
$sum
pp.pprint(list(
db.world.aggregate([ {"$group":{ "_id":"$continent", "sum of populations":{"$sum":"$population"}, "count of countries":{"$sum":1} }} ])
))
Array.sum()
temp = db.world.map_reduce(
map=Code("function(){emit(this.continent, this.population)}"), reduce=Code("""function(k,v){ return Array.sum(v) } """), out={"inline":1}
)
pp.pprint(temp['results'])