Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

MapReduce

From NoSQLZoo
Revision as of 10:15, 22 July 2015 by 40166222 (talk | contribs)
Jump to: navigation, search
#ENCODING
import io
import sys
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-16')
#MONGO
from pymongo import MongoClient
client = MongoClient()
client.progzoo.authenticate('scott','tiger')
db = client['progzoo']
#PRETTY
import pprint
pp = pprint.PrettyPrinter(indent=4)

Page Under Construction

Introducing the MapReduce function

The MapReduce function is an aggregate function that consists of two functions: Map and Reduce. As the name would suggest, the map is always performed before the reduce.

The map function takes data and breaks it down into tuples (key/value pairs) for each element in the dataset
The reduce function then takes the result of the map function and simply reduces it in to a smaller set of tuples by merging all values with the same key.

Map is used to deal with "embarassingly parallel problems" where a task can be broken down into subtasks that can then be ran simultaneously without affecting each other. Instead of just processing elements one by one, all elements can all be dealt with at the same time in parallel. This allows for massively reduced processing times as well as large scalability across multiple servers, making it an attractive solution to handling Big Data.

We will be using Javascript here through the use of Code. Also note that the Mongo shell uses the camelCase 'mapReduce()' whereas PyMongo uses the Python naming scheme: map_reduce()

For this example our MapReduce takes the form:

db.<collection>.map_reduce(
    map=<function>,
    reduce=<function>,
    out=<collection>
)
In this example we will be returning the population of all the continents.

emit(k,v) lets us pick the fields we want to turn into tuples, where k is the key and v is the value. Our keys will be the continents and our values will be the population
In our reduce we sum all the values associated with each key. Finally we specify that we want the "out" part of the MapReduce to be inline rather than a collection, allowing us to print it to screen.

from bson.code import Code
pp.pprint(
    db.world.map_reduce(
        map=Code("function(){emit(this.continent, this.population)}"), 
        reduce=Code("""function(key, values){
                           var total = 0;
                           for (var i = 0; i < values.length; i++){
                               total += values[i];
                           }
                           return total;
                       }
                    """),
        out={"inline":1},
    )
)
This is all very good, but what if we only want the results of a MapReduce? Whilst we would normally write our results to another collection, for these examples we will store our results as a dict, then access the results through Python rather than PyMongo.

Alternatively, if you want more information about the timing you can use verbose=1

Find the average population of each country by continent

from bson.code import Code
temp = db.world.map_reduce(
        map=Code("function(){emit(this.continent, this.population)}"), 
        reduce=Code("""function(key, values){
                           var total = 0;
                           for (var i = 0; i < values.length; i++){
                               total += values[i];
                           }
                           return total/values.length;
                       }
                    """),
        out={"inline":1},
)

pp.pprint(list(
   temp["results"]
))

from bson.code import Code; temp = db.world.map_reduce(map=Code("function(){emit(this.continent, this.population)}"), reduce=Code("function(key, values){ var total = 0; for (var i = 0; i < values.length; i++){total += values[i];}return total/values.length;}"),out={"inline":1});pp.pprint(list(temp["results"]))

This also allows us to do things like sorting, again for this we use Python, and not PyMongo.

Find the average population of each country by continent then sort by value in descending order.

from bson.code import Code
temp = db.world.map_reduce(
        map=Code("function(){emit(this.continent, this.population)}"), 
        reduce=Code("""function(key, values){
                           var total = 0;
                           for (var i = 0; i < values.length; i++){
                               total += values[i];
                           }
                           return total/values.length;
                       }
                    """),
        out={"inline":1},
)

import operator
pp.pprint(list(
   sorted(temp["results"],key=operator.itemgetter('value'), reverse=True)
))

from bson.code import Code temp = db.world.map_reduce(map=Code("function(){emit(this.continent, this.population)}"), reduce=Code("function(key, values){var total = 0;for (var i = 0; i < values.length; i++){total += values[i];}return total/values.length;}"),out={"inline":1});import operator;pp.pprint(list(sorted(temp["results"],key=operator.itemgetter('value'), reverse=True)))

Until now we've been working on all the data, let's apply a mapreduce to a more specific set of elements by using query

Find the GDP for each continent, but only include data from countries that start with the letter A or B.

from bson.code import Code
temp = db.world.map_reduce(
        query={"name": {"$regex":"^(A|B)"}},
        map=Code("function(){emit(this.continent, this.gdp)}"), 
        reduce=Code("""function(key, values){
                          var total = 0;
                          for (var i = 0; i < values.length; i++){
                              total += values[i];
                          }
                          return total;
                      }
                   """),
        out={"inline":1},
)

pp.pprint(list(
   temp["results"]
))

from bson.code import Code;temp = db.world.map_reduce(query={"name": {"$regex":"^(A|B)"}},map=Code("function(){emit(this.continent, this.gdp)}"),reduce=Code("function(key, values){var total = 0;for (var i = 0; i < values.length; i++){total += values[i];}return total;}"),out={"inline":1});import operator;pp.pprint(list(temp["results"]))


Another MapReduce feature is scope, which takes in a document:{} and lets you create global variables.

It's syntax is: scope={}.

Using scope, list all the countries with a higher population than Mexico.

mexico_data = db.world.find_one({"name":"Mexico"})
pp.pprint(mexico_data)

from bson.code import Code
temp = db.world.map_reduce(
        scope = {"MEXICO":mexico_data},
        map = Code("""function(){
                         if (this.population > MEXICO.population) emit(this.name, this.population)
                      }
                   """), 
        reduce=Code("function(key, values){return values}"),
        out={"inline":1},
)
import operator
pp.pprint(list(
   sorted(temp["results"],key=operator.itemgetter('value'), reverse=True)
))

mexico_data = db.world.find_one({"name":"Mexico"}); pp.pprint(mexico_data); from bson.code import Code; temp = db.world.map_reduce( scope={"MEXICO":mexico_data}, map=Code("function(){if (this.population > MEXICO.population) emit(this.name, this.population)}"), reduce=Code("function(key, values){return values}"), out={"inline":1}, ); import operator; pp.pprint(list(sorted(temp["results"],key=operator.itemgetter('value'), reverse=True)))

sort and limit

Sort allows us to sort the input documents that are passed to map, limit is self explanatory and also applies to the input documents.

Get the five countries with the highest GDPs

from bson.code import Code
temp = db.world.map_reduce(
        query={"gdp":{"$ne":None}},
        sort={"gdp":-1},
        limit=5,
        map=Code("function(){emit(this.name, this.gdp)}"), 
        reduce=Code("function(key, values){return values}"),
        out={"inline":1},
)

pp.pprint(list(
   temp["results"]
))

from bson.code import Code; temp = db.world.map_reduce( query={"gdp":{"$ne":None}}, sort={"gdp":-1}, limit=5, map=Code("function(){emit(this.name, this.gdp)}"), reduce=Code("function(key, values){return values}"), out={"inline":1}, );pp.pprint(list(temp["results"]))