AGGREGATE examples
From NoSQLZoo
#ENCODING
import io
import sys
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-16')
#MONGO
from pymongo import MongoClient
client = MongoClient()
client.progzoo.authenticate('scott','tiger')
db = client['progzoo']
#PRETTY
import pprint
pp = pprint.PrettyPrinter(indent=4)
Introducing the aggregation framework
These examples introduce the aggregation framework and its operators. Again we will be using the collection world
$match Allows us to perform queries in a similar way to find()
Show all the details for France
pp.pprint(list(
db.world.aggregate([
{"$match":{"name":"France"}}
])
))
pp.pprint(list(db.world.aggregate([{"$match":{"name":"France"}}])))
$project Allows us to select what fields to display.
It can also has the ability to insert new fields and allows you to compare fields against each other without using $where
Show the name and population density of all countries. (population/area)
Note that "density" is a new field, made from the result of dividing two existing fields.
To avoid diving by 0 we do a $match to remove any countries with negligible area, then pipe these results through to $project
pp.pprint(list(
db.world.aggregate([
{"$match":{"area":{"$neq":0}}},
{"$project":{
"_id":0,
"name":1,
"density": {"$divide": ["$population","$area"]}
}}
])
))
pp.pprint(list(db.world.aggregate([{"$match":{"area":{"$eq":0}}},{"$project":{"_id":0,"name":1,"density": {"$divide": ["$population","$area"]}}}])))