AGGREGATE examples
From NoSQLZoo
#ENCODING
import io
import sys
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-16')
#MONGO
from pymongo import MongoClient
client = MongoClient()
client.progzoo.authenticate('scott','tiger')
db = client['progzoo']
#PRETTY
import pprint
pp = pprint.PrettyPrinter(indent=4)
Introducing the aggregation framework
These examples introduce the aggregation framework and its operators. Again we will be using the collection world
$match Allows us to perform queries in a similar way to find()
Show all the details for France
pp.pprint(list(
db.world.aggregate([
{"$match":{"name":"France"}}
])
))
pp.pprint(list(db.world.aggregate([{"$match":{"name":"France"}}])))
$project Allows us to select what fields to display.
It can also has the ability to insert new fields and allows you to compare fields against each other without using $where
Show the name and population density of all Asian countries. (population/area)
Note that "density" is a new field, made from the result of dividing two existing fields, and that $divide is an aggregate function.
To avoid diving by 0 we do a $match to remove any countries with 0 area (Vatican City), then pipe these results through to $project
pp.pprint(list(
db.world.aggregate([
{"$match":{"area":{"$ne":0},"continent":"Asia"}},
{"$project":{
"_id":0,
"name":1,
"density": {"$divide": ["$population","$area"]}
}}
])
))
pp.pprint(list(db.world.aggregate([{"$match":{"area":{"$ne":0},"continent":"Asia"}},{"$project":{"_id":0,"name":1,"density":{"$divide":["$population","$area"]}}}])))
$sort Allows us to choose how the results are displayed, where 1 is ascending and -1 is descending.
Note that excluding $match is the same as {"$match":{}}
Show the name of all countries in descending order.
pp.pprint(list(
db.world.aggregate([
{"$project":{
"_id":0,
"name":1,
}},
{"$sort":{
"name":-1
}}
])
))
pp.pprint(list(db.world.aggregate([{"$project":{"_id":0,"name":1,}},{"$sort":{"name":-1}}])))
Grouping
Grouping allows us to use accumulator operations sum as $sum
All groups must have an _id. To accumulate over all the results you can just use null
$max and $min can be used to get the largest and smallest values in a group.
Get the smallest and largest GDPs.
pp.pprint(list(
db.world.aggregate([
{"$group":{
'_id':'null',
'min':{"$min":"$gdp"},
'max':{"$max":"$gdp"},
}},
{"$project":{
"_id":0,
"min":1,
"max":1
}},
])
))
pp.pprint(list(db.world.aggregate([{"$group":{'_id':'null','min':{"$min":"$gdp"},'max':{"$max":"$gdp"},}},{"$project":{"_id":0,"min":1,"max":1}},])))
In the previous example it is impossible to get the names of the countries with the largest and smallest GDPs.
If we want to do this, we can use sort=[("uid", -1)] inside a find_one() statement, eg:
Get the names and GDPs of the two countries with the smallest and largest GDPs.
pp.pprint(
db.world.find_one({},{"name":1,"gdp":1,"_id":0},sort=[("gdp", 1)])
db.world.find_one({},{"name":1,"gdp":1,"_id":0},sort=[("gdp", -1)])
)
pp.pprint(db.world.find_one({},{"name":1,"gdp":1,"_id":0},sort=[("gdp",1)])db.world.find_one({},{"name":1,"gdp":1,"_id":0},sort=[("gdp",-1)]))